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Stokes flow of a conducting fluid past an axially symmetric 
body in the presence of a uniform magnetic field 

By I-DEE CHANG 
Guggenheim Aeronautical Laboratory, California Institute of Technology 

(Received 15 July 1960) 

Low Reynolds number flow of an incompressible fluid past an axially symmetric 
body in the presence of a uniform magnetic field is studied using a perturbation 
method. It is found that for small Hartmann number M an approximate drag 
formula is given by 

D’=D; 1+---- M )  + O(M2), 

where Dh is the Stokes drag for flow with no magnetic effect. 

( 16npva U 

1. Introduction 
In  1957, Chester studied low Reynolds number flow of an incompressible 

conducting ffuid past a sphere in a magnetic field which is uniform at infinity. He 
showed that when the magnetic Reynolds number R, is small the magnetic field 
is essentially independent of the fluid motion. For the case where the solid and the 
fluid have nearly the same permeability, a uniform magnetic field will result, i.e. 
H’ = Hoi = magnetic field at infinity. It follows further from the symmetry that 
there is no electric field, since for all such flows the electric currents form closed 
circuits. The governing equations and the boundary conditions for the problem 
become divv = 0, ( l a )  

-Vp+V2v-M2[v-(v.i)i] = 0, ( 1 b )  
v + i  as r+co ( r 2 = x 2 + y 2 + z 2 ) ,  ( 2 4  

( 2 b )  v = 0 at the body. 

In the above, all quantities are non-dimensional; 

U = free-stream velocity; 
a = characteristic length of body; 

Ua 
Re = - = Reynolds number; 

R, = Uapg = magnetic Reynolds number; 

M = pHoa(b)’ = Hartmann number; 

V 

i = unit vector in the x-direction. 

Other symbols have the usual meanings in electro- and hydrodynamics. Primed 
quantities are in physical units (cf. Chester 1957). 
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In  this note we consider the more general problem of flow past an axially 
symmetric body. Assuming that the Hartmann number M is small, we shall show 
that the drag on the body is given by the formula 

D' D E -  
pv Ua (3) 

Do = DJpvUa is the (non-dimensional) drag on the body in Stokes flow without 
magnetic effect and is known by existing formulas, such as those given by Payne 
& Pel1 (1 960). To the order of approximation O(M) ,  Do also appears as a parameter 
characterizing the body shape. 

2. The perturbation method 

exact solutions of (1): 
Following the usual procedure, one considers the following expansions of the 

v = h(O)(x, y, Z )  + Mh(')(x, y, Z )  + M2h@)(X, y, Z) + . . . , 
p = p(O'(x, y, 2) + Mp"'(x, y, 2 )  + M2p'2'(x, y, 2) + . . . . 

( 4 4  

(4b) 

O(1); divh('J) = 0, ( 5 4  

(66) 

O ( M ) ;  div h(l) = 0,  ( 6 4  

(6b) 

O(M2);  div h(2) = 0, (7 a )  

(7 b )  

By insertion of the above expansions into equation (1) one obtains the following 
equations: 

- VpW + V2hW = 0; 

- Vp(1) + V2h(U = 0; 

- VpW + VZh(2) = h(0) - (h"3. i) i, 

etc. Equations (5) and ( 6 )  are identical to the Stokes equations. This indicates 
that at a finite distance from the body, i.e., r = O(l ) ,  in the limit M + 0, the 
flow field is essentially governed by Stokes's equations. However, it can be shown 
that at great distances from the body (i.e. r = O(M-a), 0 < cc < 1) the above 
expansions given by (4) are not uniform approximations of the exact solutions; by 
not being uniform approximations we mean that the difference between the 
expansions and the exact solutions for a given value of M becomes arbitrarily 
large as r --f co. A uniformly valid approximation of the exact solution in the 
neighbourhood of r = co is given by a second type of expansion using different 
variables (outer expansions). The expansions defined by (4), which are uniformly 
valid in the neighbourhood of the body, are referred to as the inner expansions. 

The outer expansions are defined by 

v = i+Mg(1)(2,y",Z)+Mzg(2)(2,y",Z)+ ..., ( 8 4  
p = M2@'1)(2, y", 2) + M3@'2'(2, y", 2) + . . ., ( 8 b )  

~ = M x ,  y"=My,  ~ = M z .  (9) 

and the independent variables are now (outer variables) 

The above expansions given by (8) may be formally obtained from the exact 
solutions by the limit process M -+ 0 with fixed (2, y", Z) and are expected to be 
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uniformly valid for all r = O(M-1). Insertion of the expansions into (1) leads to the 
equations N 

divg(o=O ( i =  1,2,  ...), ( 1 0 4  

(lob) - f7p + Vzgo - [gci) - (go i) i] = 0. 

The equations that determine each individual term of the outer expansions (8) 
are thus identical to the exact equations (1); however, we shall see below that the 
boundary conditions for these equations are simpler than those for equations (1). 

There remains the problem of determining the proper boundary conditions for 
the individual terms of the inner and the outer expansions. Since the inner 
expansions are not valid a t  infinity, boundary condition (2 a )  does not in general 
hold for the inner expansions. For a similar reason, boundary condition (2 b )  in 
general does not hold for the outer expansions. These boundary conditions are 
replaced by the matching conditions, which have the requirements that the inner 
and the outer expansions should agree term for term for some intermediate orders 
of r ,  namely r = O(M-a), where 0 < a < 1, for which the inner and the outer 
expansions are both valid. The use of the matching conditions will become clear 
from the way in which the solutions are determined (cf. Lagerstrom & Cole 1955; 
Proudman & Pearson 1957 ; Lagerstrom). 

3. The first-order inner solutions 
The first term in the outer expansion (8a)  is the free-stream velocity v = i. 

This term may be understood by the following reasoning. Assume the solid is a 
sphere of radius a. Then the boundary of the solid is given in outer variables by 
? = M and in the limit M -+ 0 the body shrinks to a point. A point cannot cause a 
finite disturbance in the fluid, hence the value of v will tend to the free-stream 
velocity i. 

Let us consider thefirst-order inner solution h(O) andp(O). For the inner solutions, 
the no-slip boundary conditions are valid: 

By the matching conditions, h(O) must agree for large values of r with the leading 
term of the outer expansion, and hence 

Equations (5) ,  (11) and (12) show that the solutions of h(O) andp(0) are simply the 
solutions of the non-magnetic Stokes problems. 

at the body. (11) hCi) = 0 

h(O)+ i as r --f 00. (12) 

For a sphere, such solutions are 

h(0) = i - $Al + $A2, 

where 

and 

The drag on the sphere, in physical units, is 

06 = 67~pvUa. 

Explicit solutions are also available for bodies of many other shapes (Oseen 
1927; Payne & Pel1 1960). It can be shown in general that for large values of r the 



476 

asymptotic expressions 
any shape are given by 

I-Dee Chang 

of the Stokes solutions for axially symmetric bodies of 

(Odqvist 1930; Payne & Pel1 1960). If one defines ra = Mar, where 0 < a < 1, 
and rewrites (13) in this variable, the following results are obtained: 

h(0)(xa,ra; M )  = ( 1 4 4  

(14b) 
D x  

p(0)(xa, r,; N) = - 2 Mza + O(M3a).  
4n9f 

Equations (14) imply that, when r is of an intermediate order O(M-a) ,  0 < a < I, 
in comparison with that used in the inner (a = 0) and outer (a = 1) limits, the 
leading terms of the expansion of h(O) and p(O) are the terms displayed in (13). The 
first-order solutions of the outer expansions, g(l) and p(l) must therefore agree with 
the inner solutions in these terms. 

4. The iirst-order outer solutions 
The solutions of g(1) and @(l) are determined from equations (10) with the 

boundary condition g(l) + 0 as 7 + 00 and the matching condition stated at the 
end of 3 3. Such solutions are given by 

g(l) = DOG, p(’) = DoP, 

where 

When (16) are rewritten in the variable ra and expanded in powers of M ,  there are 
obtained the results 

By comparing these results with (14), one sees that the inner and the outer 
expansions are matched to the order O(Ma). 

5. The drag on the body 
The leading term in the outer expansion of v which is not matched by the inner 

expansionis now of order O ( M ) .  From (17a) it  follows that the second-order inner 
solution h(l), which satisfies the Stokes equations (6b), should satisfy the boundary 
conditions h(l) = 0 at the body and the condition h(1) +- D0i/16n as r -+ 00. Such 

D 
16n 

a solution is easily seen to be 
h(U = 0 h(0). 
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The corresponding pressure is 

p(l) = D , p ( o ) .  
1 677 

To the order O ( M )  the inner solution of the velocity field is then 

Drag Drag 
Body (non-magnetic) (magnetic) 

Hemispherical cup (radius a)  17.525pvaU 17.525pvaU ( 1 +- '*;5M) 

16pvaU 1 + -M Flat disc (radius a) 

Sphere (radius a )  67rpva U 6npvaU(1+ QM) 
Prolate spheroid* 8n6pva U 87rSpvaU(l+ &JM) 
Oblate spheroid* 87rPpvaU SnPpvaU(l+ &PM) 

l6pvaU ( : I  

* 6 and 6 are constants related to the geometry of the spheroid (Payne & Pell 1960). 

TABLE 1 

which shows that the effect of the magnetic field on the inner Stokes flow is an 

apparent increase of the free-stream velocity in the ratio 1 : 1 + --M . There is 

a corresponding amount of increase in the drag on the body, as can be easily 
verified by simple argument. The drag on the body is then given by formula (3). 

In  Table 1 we list a few cases for which the non-magnetic Stokes drag formulas 
are given by Payne & Pell (1960). 

( 2 )  
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